10,744 research outputs found

    Discovering a misaligned CO outflow related to the red MSX source G034.5964-01.0292

    Full text link
    The red MSX source G034.5964-01.0292 (MSXG34), catalogued as a massive YSO, was observed in molecular lines with the aim of discover and study molecular outflows. We mapped a region of 3'x3' centered at MSXG34 using the Atacama Submillimeter Telescope Experiment in the 12CO J=3-2 and HCO+ J=4-3 lines with an angular and spectral resolution of 22" and 0.11 km/s, respectively. Additionally, public 13CO J=1-0 and near-IR UKIDSS data obtained from the Galactic Ring Survey and the WFCAM Sciencie Archive, respectively, were analyzed. We found that the 12CO spectra towards the YSO present a self-absorption dip, as it is usual in star forming regions, and spectral wings evidencing outflow activity. The HCO+ was detected only towards the MSXG34 position at v_LSR ~ 14.2 km/s, in coincidence with the 12CO absorption dip and approximately with the velocity of previous ammonia observations. HCO+ and NH3 are known to be enhanced in molecular outflows. Analyzing the spectral wings of the 12CO line, we discovered misaligned red- and blue-shifted molecular outflows associated with MSXG34. The near-IR emission shows a cone-like shape nebulosity composed by two arc-like features related to the YSO, which can be due to a cavity cleared in the circumstellar material by a precessing jet. This can explain the misalignment in the molecular outflows. From the analysis of the 13CO J=1--0 data we suggest that the YSO is very likely related to a molecular clump ranging between 10 and 14 km/s. This suggests that MSXG34, with an associated central velocity of about 14 km/s, may be located in the background of this clump. Thus, the blue-shifted outflow is probably deflected by the interaction with dense gas along the line of sight.Comment: Accepted in A&A June 10, 201

    Studying the Molecular Ambient towards the Young Stellar Object EGO G35.04-0.47

    Get PDF
    We are performing a systematic study of the interstellar medium around extended green objects (EGOs), likely massive young stellar objects driving outflows. EGO G35.04-0.47 is located towards a dark cloud at the northern-west edge of an HII region. Recently, H2 jets were discovered towards this source, mainly towards its southwest, where the H2 1-0 S(1) emission peaks. Therefore, the source was catalogued as the Molecular Hydrogen emission-line object MHO 2429. In order to study the molecular ambient towards this star-forming site, we observed a region around the aforementioned EGO using the Atacama Submillimeter Telescope Experiment in the 12CO J=3--2, 13CO J=3--2, HCO+ J=4--3, and CS J=7--6 lines with an angular and spectral resolution of 22" and 0.11 km s-1, respectively. The observations revealed a molecular clump where the EGO is embedded at v_LSR ~ 51 km s-1, in coincidence with the velocity of a Class I 95 GHz methanol maser previously detected. Analyzing the 12CO line we discovered high velocity molecular gas in the range from 34 to 47 km s-1, most likely a blueshifted outflow driven by the EGO. The alignment and shape of this molecular structure coincide with those of the southwest lobe of MHO 2429 mainly between 46 and 47 km s-1, confirming that we are mapping its CO counterpart. Performing a SED analysis of EGO G35.04-0.47 we found that its central object should be an intermediate-mass young stellar object accreting mass at a rate similar to those found in some massive YSOs. We suggest that this source can become a massive YSO.Comment: accepted to be published in PASJ - 24 September 201

    Molecular gas associated with IRAS 10361-5830

    Get PDF
    We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and investigating the evolutionary state of the young stellar objects identified there. Using the APEX telescope, we mapped the molecular emission in the J=3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5' region around the IRAS position. We also observed the high density tracers CS and HCO+ toward the source. The cold dust distribution was analyzed using submillimeter continuum data at 870 \mu\ obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the ISM. The molecular gas distribution reveals a cavity and a shell-like structure of ~ 0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects (YSOs) projected onto the cavity. The total molecular mass in the shell and the mean H2_2 volume density are ~ 40 solar masses and ~(1-2) x 103^3 cm−3^{-3}, respectively. The cold dust counterpart of the molecular shell has been detected in the far-IR at 870 \mu\ and in Herschel data at 350 \mu. Weak extended emission at 24 \mu\ from warm dust is projected onto the cavity, as well as weak radio continuum emission. A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact HII region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact HII region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the HII region.Comment: Accepted in A&A. 11 pages, 10 Postscript figure

    12CO and 13CO J=3-2 observations toward N11 in the Large Magellanic Cloud

    Full text link
    After 30 Doradus, N11 is the second largest and brightest nebula in the LMC. This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of 12^{12}CO (J=1--0 and 2--1), and in some particular regions pointings of the 13^{13}CO J=1--0 and 2--1 lines were also performed. Using ASTE we mapped the whole extension of the N11 nebula in the 12^{12}CO J=3--2 line, and three sub-regions in the 13^{13}CO J=3--2 line. The regions mapped in the 13^{13}CO J=3--2 were selected based on that they may be exposed to the radiation at different ways: a region lying over the nebula related to the OB association LH10 (N11B), another one that it is associated with the southern part of the nebula related to the OB association LH13 (N11D), and finally a farther area at the southwest without any embedded OB association (N11I). We found that the morphology of the molecular clouds lying in each region shows some signatures that could be explained by the expansion of the nebulae and the action of the radiation. Fragmentation generated in a molecular shell due to the expansion of the N11 nebula is suggested. The integrated line ratios 12^{12}CO/13^{13}CO show evidences of selective photodissociation of the 13^{13}CO, and probably other mechanisms such as chemical fractionation. The CO contribution to the continuum at 870 μ\mum was directly derived. The distribution of the integrated line ratios 12^{12}CO J=3--2/2--1 show hints of stellar feedback in N11B and N11D. The ratio between the virial and LTE mass (Mvir_{\rm vir}/MLTE_{\rm LTE}) is higher than unity in all analyzed molecular clumps, which suggests that the clumps are not gravitationally bounded and may be supported by external pressure. A non-LTE analysis suggests that we are mapping gas with densities about a few 103^{3} cm−3^{-3}.Comment: Accepted to be published in A&A. Figures were degrade

    Inelastic lifetimes of hot electrons in real metals

    Get PDF
    We report a first-principles description of inelastic lifetimes of excited electrons in real Cu and Al, which we compute, within the GW approximation of many-body theory, from the knowledge of the self-energy of the excited quasiparticle. Our full band-structure calculations indicate that actual lifetimes are the result of a delicate balance between localization, density of states, screening, and Fermi-surface topology. A major contribution from dd-electrons participating in the screening of electron-electron interactions yields lifetimes of excited electrons in copper that are larger than those of electrons in a free-electron gas with the electron density equal to that of valence (4s14s^1) electrons. In aluminum, a simple metal with no dd-bands, splitting of the band structure over the Fermi level results in electron lifetimes that are smaller than those of electrons in a free-electron gas.Comment: 4 papes, 2 figures, to appear in Phys. Rev. Let

    A view of Large Magellanic Cloud HII regions N159, N132, and N166 through the 345 GHz window

    Get PDF
    We present results obtained towards the HII regions N159, N166, and N132 from the emission of several molecular lines in the 345 GHz window. Using ASTE we mapped a 2.4' ×\times 2.4' region towards the molecular cloud N159-W in the 13^{13}CO J=3-2 line and observed several molecular lines at an IR peak very close to a massive young stellar object. 12^{12}CO and 13^{13}CO J=3-2 were observed towards two positions in N166 and one position in N132. The 13^{13}CO J=3-2 map of the N159-W cloud shows that the molecular peak is shifted southwest compared to the peak of the IR emission. Towards the IR peak we detected emission from HCN, HNC, HCO+^{+}, C2_{2}H J=4-3, CS J=7-6, and tentatively C18^{18}O J=3-2. This is the first reported detection of these molecular lines in N159-W. The analysis of the C2_{2}H line yields more evidence supporting that the chemistry involving this molecular species in compact and/or UCHII regions in the LMC should be similar to that in Galactic ones. A non-LTE study of the CO emission suggests the presence of both cool and warm gas in the analysed region. The same analysis for the CS, HCO+^{+}, HCN, and HNC shows that it is very likely that their emissions arise mainly from warm gas with a density between 5×1055 \times 10^5 to some 10610^6 cm−3^{-3}. The obtained HCN/HNC abundance ratio greater than 1 is compatible with warm gas and with an star-forming scenario. From the analysis of the molecular lines observed towards N132 and N166 we propose that both regions should have similar physical conditions, with densities of about 103^3 cm−3^{-3}.Comment: accepted in MNRAS (October 5, 2015

    Germanene: a novel two-dimensional Germanium allotrope akin to Graphene and Silicene

    Get PDF
    Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a 3\sqrt{3}x3\sqrt{3}R(30{\deg}) germanene layer in coincidence with a 7\sqrt{7}x7\sqrt{7}R(19.1{\deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.Comment: 16 pages, 4 figures, 1 tabl

    ASTE observations in the 345 GHz window towards the HII region N113 of the Large Magellanic Cloud

    Get PDF
    N113 is an HII region located in the central part of the Large Magellanic Cloud (LMC) with an associated molecular cloud very rich in molecular species. Most of the previously observed molecular lines cover the frequency range 85-270 GHz. Thus, a survey and study of lines at the 345 GHz window is required in order to have a more complete understanding of the chemistry and excitation conditions of the region. We mapped a region of 2.5' x 2.5' centered at N113 using the Atacama Submillimeter Telescope Experiment in the 13CO J=3-2 line with an angular and spectral resolution of 22" and 0.11 km/s, respectively. In addition, we observed 16 molecular lines as single pointings towards its center. For the molecular cloud associated with N113, from the 13CO J=3-2 map we estimate LTE and virial masses of about 1x10^4 and 4.5x10^4 M_sun, respectively. Additionally, from the dust continuum emission at 500 micron we obtain a mass of gas of 7x10^3 M_sun. Towards the cloud center we detected emission from: 12CO, 13CO, C18O (3-2), HCN, HNC, HCO+, C2H (4-3), and CS (7-6); being the first reported detection of HCN, HNC, and C2H (4-3) lines from this region. The CS (7-6) which was previously tentatively detected is confirmed in this study. By analyzing the HCN, HNC, and C2H, we suggest that their emission may arise from a photodissociation region (PDR). Moreover, we suggest that the chemistry involving the C2H in N113 can be similar to that in Galactic PDRs. Using the HCN J=4-3, J=3-2, and J=1-0 lines in a RADEX analysis we conclude that we are observing very high density gas, between some 10^5 and 10^7 cm-3.Comment: accepted for publication in A&A, September 9, 201

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap
    • …
    corecore